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Abstract 

IP application performance must frequently be assessed using empirical methods that combine 

performance testing and modeling. We have developed an approach to identifying bottlenecks using 

performance signatures. A performance signature is a set of characteristic and repeatable behaviors 

(e.g., response time, resource utilization or throughput vs. some measure of load) that arise from specific 

performance tests. By systematically looking for signatures, scalability bottlenecks can be identified more 

readily than in the past. We summarize our experiences with performance signatures that have arisen out 

of multiple Internet application performance studies. The original objectives of those studies were to 

characterize the capacity and response times of different applications. However we found that we first 

needed to perform bottleneck and scalability analyses to identify latent problems and opportunities for 

major improvement. We provide a number of performance signatures that have been encountered in real 

Internet applications. 

1. Introduction 

Consider the following scenario:  You’ re a performance analyst for a large telecommunications company. 

Its 1980, although it could just as easily be 10 years earlier or later.  You’ve been asked to work the 

following problem. “At what call attempt rate will the switching module of a new switching system 

currently under development first violate the 98.5% < 3 seconds dial tone delay requirement?”  Your 

approach?  Develop a queueing model, of course.  There’s abundant documentation containing detailed 

information about the design.  What’s not covered can be learned by asking the developers.  They know 

the approximate code size and can estimate task times.   The answer isn’ t needed tomorrow – there’s time 

to learn the system internals.   The system will be in development for several years and production for 
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decades.  “Of course, what we’d really like is some guidance in assessing the performance impact of 

some design choices we have.”   Right up your alley.   You can’ t wait to get started. 

Fast forward to 2001:  You’ re still a performance analyst for a large telecommunications company, albeit 

a considerably changed company.  You’ve been asked to work the following problem.  “At what login 

attempt rate will the new proposed security platform fronting our web assets first violate the 99% < 2 

seconds response time requirement?”   You’re approach?  You try the 1980’s method, only to discover – 

the documentation, what there is, consists of high level slide shows or service descriptions which cover 

the “what”  but little of the “how”;  the developers can’ t help much – they’ re focused on integrating the 3rd 

party vendor products they’ re using and are on an aggressive time schedule;  the answer is needed 

yesterday;  and the question was more like “what kind of performance can we expect”  (translation “will it 

scale to support millions of users?”).  You don’ t know where to start. 

Sound familiar?  The preceding discussion illustrates a challenge facing today’s telecommunications 

performance analysts.  The world has changed – in part due to deregulation in the industry, but even more 

so due the technology revolution we call the Internet.  To be successful as analysts, we need to change as 

well.  A different approach is needed. 

 In this paper we share some of our experience is using an empirical “gray box”  load testing approach to 

performance analysis of today’s IP systems and applications.  In particular, we introduce and illustrate the 

concept of a performance signature  for assessing system performance and scalability. A performance 

signature is a set of characteristic and repeatable behaviors (e.g., patterns in resource measurements) that 

arise from specific performance tests. A signature may result from the behavior of a single performance 

metric or from the behavior of a combination of multiple performance metrics. Performance signatures 

combine elements of load testing [3] and performance tuning [2], each of which has a rich literature.  

Using signatures, we believe bottleneck detection and scalability questions can be more readily and 

rapidly answered with significantly less testing effort. 
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In Section 2 we outline the performance testing and signature process. We describe the types of tests that 

should be performed as well as the testing process. We also review some of the non-technical aspects of a 

successful performance testing effort. Section 3 gives many examples of performance signatures 

encountered in real applications. For each signature we present the problem definition, tests used to detect 

the problem, analysis, signature, where design changes are required, and the problem resolution.  

2. Performance Testing Process 

Performance testing of Internet applications is a delicate task that requires customized planning according 

to the properties of the system under study. However, there are general techniques and strategies that 

increase the likelihood of success in a signature-based performance testing effort. In this section we 

present discussions of key components of a successful performance testing strategy for Internet 

applications. We outline the process flow of a signature-based performance testing effort and discuss 

important factors that affect the outcome and results of a performance testing project. 

2.1 Types of Performance Tests 

Depending on the properties of the system under study, various types of performance testing can be 

implemented to identify performance signatures of the system. In this section we present a comparative 

discussion of methodologies and results of different types of performance testing. 

Atomic Transactions vs. Operational Profiles: The transactions used to generate load to the system can 

either be in the form of atomic transactions or transaction mixes that reflect the operational profile. 

Atomic transactions are individual transactions selected on the basis of their frequency of occurrence, 

importance or resource consumption. Tests using atomic transactions are done in order to assess the 

impact of a particular type of transaction on the system, as well as to isolate performance issues to a 

particular transaction type. In operational profile performance testing, the performance of the system is 

evaluated using transaction mixes that to some degree resemble the operational profile of the production 
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environment. The purpose of testing with operational profiles is to get a realistic view of performance 

under field conditions. 

Load Testing vs. Stress Testing: Load testing evaluates and models the performance of various 

components of the system under different controlled levels of load. The number of concurrent users may 

be fixed at a predefined number with each user generating load at a prescribed rate, or may vary 

according to the load, i.e., a new “user”  may be spawned at each arrival epoch. In stress testing load is 

generated by a number of concurrent users. As soon as a user receives a response, it immediately submits 

the next request (with negligible client delay). Each of the simulated users does so independently and in 

parallel. Tests are run with increasing numbers of users until the system is saturated. Either load testing or 

stress testing can be done using atomic transactions or using an operational profile.  

Sequence of Tests: Ideally, a systematic performance testing effort would integrate all possible 

combinations of tests in order to develop a comprehensive signature profile. In our experience, we have 

found it helpful to begin with atomic stress tests, since bottleneck isolation is usually easier in a tightly 

controlled environment. Then we move on to load testing with operational profiles in both stress mode 

and load test mode. Finally, we perform a soak run where load tests are performed under the expected 

operational profile and transaction volume for a long period of time (days) in order to discover any latent 

performance issues. 

2.2 Signature-Based Performance Testing Process Flow 

The following is a guideline for the process flow of a signature-based performance testing effort. 

Test Planning Activities 

� Verify hardware, software and network configuration of the lab environment. In order to achieve 

realistic results, the lab configuration should be identical to the field, although this is not always 

possible due to cost considerations. If the lab and field are not identical, there should be a clear view 

of how field performance will be estimated from the lab results. Differences between the lab and field 
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can usually be ignored for non-bottleneck resources. Extrapolation of performance for bottleneck 

resources can be more difficult. Extrapolation to additional processors (assuming multiprocessor 

scalability has been demonstrated), usually works. Extrapolation to different I/O subsystems has 

proven difficult. 

� Select tools that are appropriate for signature-based testing. There are sophisticated vendor 

tools, that automate many of the testing tasks. We have effectively used LoadRunner® by Mercury 

Interactive and Silk Performer® by Segue. Both tools can be used for either load testing or stress 

testing. When cost is an issue, there are free tools that can be used or custom scripts can be 

developed. Typically, these have a less sophisticated user interface, are more cumbersome to use 

when the load test parameters need to be continually changed, and may be limited to either stress 

testing or constrained types of load testing. However, they are an excellent way to get started when 

time and/or money is an issue. Examples of free tools are http-load and MS WCAT. More 

information can be found at http://www.acme.com/software/http_load/ and 

http://msdn.microsoft.com/workshop/server/toolbox/wcat.asp.  A very good and up-to-date listing of 

tools (free and commercial) can be found at  http://www.softwareqatest.com/qatweb1.html. 

� Define testing objectives, performance criteria and metrics. “Success criteria”  for performance testing  

should be defined before testing begins. If requirements are not available, then testing should focus on 

scalability to identify the system breakpoints. 

� Review system architecture, data/task flow, and operational profile. Conduct qualitative 

performance/reliability assessment and modeling. Identify potential performance bottlenecks based 

on system architecture and operations. Whatever information is available about the system internals 

and expected system operation should be understood before testing begins. Often, knowledge gained 

in this phase leads to a list of suspected bottlenecks. These can be used to design more effective test 

cases that isolate whether the suspected bottlenecks are present or not. Sometimes, bottlenecks can be 

identified from qualitative descriptions alone. 
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� Identify critical transactions and define usage/demand forecasts for various transactions and 

operational profiles. The idea in this phase is to identify “heavy hitter”  transactions, either from a 

volume, resource consumption or importance perspective. The “heavy hitter”  transactions form the 

atomic transactions. Operational profiles are critical in establishing credible transaction mixes. 

Generally, the transaction mixes will be mixtures of the atomic transactions. Operational profiles may 

also include different load and/or operational scenarios (e.g., a startup mode for the service with  

many customer registrations, a “steady state”  mode that reflects a mature service, or a failure 

scenario). When bottlenecks are identified and need to be fixed at substantial time and cost to the 

product, there needs to be convincing evidence that the loads that were used are “ realistic” . 

� Review system log files, monitoring tools, and data collection/instrumentation capabilities. Identify 

required measurements that would capture all aspects of system performance and yield information 

on potential performance signatures. Load test tools are frequently only able to capture user-

perceived behavior. Bottleneck diagnosis needs to be based on an understanding of what is happening 

inside the system. Therefore key diagnostic data must be obtained from log files and system 

accounting  utilities. Some of the system accounting utilities that we use heavily in Unix-based 

system performance testing are sar, ps, iostat, mpstat and vmstat. For NT systems 

we use utilities such as perfmon. 

� Define testable workload profiles (i.e., test cases/scenarios). When designing test cases, it is 

important to “start simple”. Performance testing efforts can be easily bogged down in complicated 

tests that shed no insight into the causes of anomalous system behavior. As noted in the previous 

section, we usually start with atomic transaction stress tests, followed by stress and load tests using 

one or more operational profiles, ending with long load tests at the expected system load and 

operational profile to uncover any latent problems. Tests should be conducted under different loads 

and operational profiles. 

� Develop test tool and instrumentation scripts. Include hooks in the scripts to capture potential 

signatures of interest.  
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� Conduct initial testing for proof of concept. This critical step should not be overlooked. It is used to 

identify whether the lab is configured correctly, whether the load test scripts are coded correctly and 

whether the system instrumentation is functioning as expected. This step also identifies flaws in the 

basic testing approach. We have learned through painful experience not to neglect this step, when 

days of load tests results have been rendered useless due to a simple change that could have been 

made at the outset of testing. 

Performance Test Execution and Analysis 

	 Execute all load test scenarios and capture resource consumption, task flow, response time, traffic, 

and failures during all scenarios. Testing should ideally be performed iteratively, executing and 

analyzing the results of a few tests, then modifying test scenarios if appropriate, before proceeding. 


 Produce load-service performance characterizations and models. The test data should be used to 

produce load-service curves. In some cases, “gray”  box modeling is useful for identifying possible 

bottlenecks [5] and can be helpful in the diagnosis process. 

� Perform a root cause analysis for all observed failures, anomalies. Signature characterization is often 

time-consuming and requires consultation with developers and/or vendors to identify what is the 

cause of observed behaviors. Re-testing with different sets of test parameters may be required to 

pinpoint suspected problems. 

� Produce performance requirements, engineering rules, guidelines for system monitoring and future 

signature detection, and recommendations for bottleneck removal and performance improvement. 

2.3 Ensuring a Successful Performance Testing Effort 

The guidelines in the previous section discuss various technical aspects of signature-based performance 

testing. However, there are numerous non-technical challenges in making a performance effort really 

happen. Often performance does not have the same priority as feature delivery (unless there has been a 

crisis), and performance is often the first thing to be cut when schedules inevitably get tight. Assuming 
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the service or product actually gets used, ignoring performance inevitably leads to disaster, but this is not 

in the minds of engineers urgently trying to deliver a product. 

 The following is a selected set of effective strategies that we have used in a variety of projects to achieve 

successful performance results.  

1. Obtain organizational alignment and organization of test resources: Organizational and resource 

issues are most likely to delay or stall a performance testing effort. A systematic effort to verify 

objectives, identify expectations, obtain commitment of resources, and determine all processes that 

will be followed throughout the testing process is a critical prerequisite of a successful performance-

testing project.  

2. Schedule time for performance testing: Performance testing needs to be planned into the project 

schedule as part of the delivery process. Failure to meet this condition may result in having a new 

release in production with unidentified errors, failures, and bottlenecks. 

3. Form a dedicated team of performance testers that work across applications: Due to the requirements 

of a release cycle, it is usually infeasible to expect system testers to conduct performance testing. 

Performance testing is a specialized expertise within testing and as such is best performed by people 

with experience in that area. This is particularly important in signature-based testing as it eliminates 

the need for repeated training and speeds up the overall testing process.  

4. Allow for iterative performance testing that continues beyond the end of the system test cycle: Each 

performance testing cycle identifies performance signatures and issues that need to be verified or 

further investigated through additional testing of the current or future releases of the application.  

5. Proactively manage third party software vendors: Considering that the dynamics and performance 

signatures of third party software are often unknown to the performance test team, it is important to 
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share results of “gray/black box”  analysis techniques with the vendor to obtain more information 

about the internal software bottlenecks. 

3. Case Studies 

In this section we present performance signatures from multiple Internet applications. For each signature, 

we present the problem definition, the method used to detect the problem, analysis of the data, and a 

summary of the signature.  For some of the signatures, we were able to suggest a design change to 

alleviate the bottleneck. Where this was possible, the resolution is also described.  

Case Study 1: A Fatal Memory Leak 

Problem Description: Memory leaks are a common software fault in applications written in languages 

such as C++ in which the programmer is responsible for memory allocation and recovery. Memory gets 

allocated, but due to a fault in the code, never gets freed. Big, obvious leaks are usually detected (and 

corrected) early in the software development process. Small, slow leaks sometimes slip through to load 

test, or worse, production. A memory leak is considered to be fatal if it results in the application crashing 

or otherwise failing to function.  

Detection: Fatal memory leaks can be detected in load test by executing a long soak run (load test that is 

run for days) with a fixed workload while monitoring application throughput and memory consumption.  

Analysis: The following figures provide example signatures. In Figure 1.1 we show throughput vs. time 

of a Web server application running on a Unix server we recently tested. The test started at time 0 and 

was scheduled to run over a weekend. Unfortunately, about 5½ hours into the test, things went awry. 

Throughput, which had been holding at a steady 62 transactions per second suddenly fell to effectively 

zero. What happened? In Figure 1.2 we show the memory profile for the Web server process during this 

test, captured by running a simple shell script executing ps and sleep in a loop. Initially 13MB, the 

process size grows rapidly at first, and then steadily until reaching 182MB at the 5½ hour point of the test. 
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At this point the process stopped growing, but also stopped serving all but a very small number of 

transactions. The other transactions timed-out and were discarded by the load generator. 

 The test was re-run several times to make sure the results were reproducible. In each case the profile was 

repeated. In most cases the process died, as indicated by the dotted line in Figure 1.2, as opposed to 

remaining active, but otherwise non-functioning as in the first test run (Figure 1.1). This normal growth, 

which reaches a certain level and stops, needs to be distinguished from a fatal memory leak, in which 

memory grows to the point that something breaks and the application fails to function. The latter may not 

reveal themselves except during a long test run as in this example. 
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Signature: Figures 1.1 and 1.2 together constitute the signature of a fatal memory leak – steady 

throughput during a long test run accompanied by steady application memory growth followed by a sharp 

drop in throughput accompanied by no further memory growth, or more typically, an application crash. 

Case Study 2: Throughput Degradation Due to Poor Multiprocessor Scalability 

Problem Description: Web applications are commonly deployed on symmetric multi-processor (SMP) 

servers. An N-way server is typically cheaper than N 1-way servers, and definitely easier (and less costly) 

to administer and operate. A measure of how well an application performs on an SMP server is how close 

it comes to delivering N times the throughput performance of a single CPU server. Some deviation from 

strictly linear scaling is common and inevitable, but major deviations can negate the cost advantages cited 

above. Flat scalability (i.e., add a CPU and throughput stays the same) is clearly not good. Negative 

scalability (i.e., add a CPU and throughput goes down!) is downright bad and to be avoided. 

Detection: Application SMP scalability can be assessed by conducting a series of load tests with different 

numbers of active CPUs. Each test is run in a series of stages, starting with low load and increasing load 

at each stage. For Web applications, this is typically accomplished by starting the load test with a small 

number of “virtual user”  load generation agents and relatively long think times between transactions and 

adding virtual users and/or reducing think times at each stage. Measures of interest are transaction 

throughput and CPU utilization.  

Analysis: Figure 2.1 shows CPU utilization vs. throughput for a multithreaded Web server application 

running on a 4-CPU Unix server. The first few points are as expected – CPU increases linearly with load 

as the number of virtual users is increased. Above 140 transactions/second (25% CPU utilization), 

however, the curve changes showing a more rapid increase in CPU utilization as throughput increases. 

Above 200 transactions per second (50% CPU utilization), the slope becomes quite steep. Above 75% 

CPU utilization, an interesting phenomenon is observed – throughput decreases as more virtual users are 

added! (and as CPU utilization increases). The maximum sustainable throughput (throughput achieved 
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with a large number of users and corresponding to 100% CPU utilization) is actually only 180 

transactions per second. 

What’s going on? In Figure 2.2 we show the results of re-running the test with fewer active CPUs. (The 

psradm command available with the SUN Solaris operating system is a simple way to control the 

number of active CPUs). With 3 active CPUs, we see a bit of the same behavior at high CPU utilization, 

but a higher sustainable throughput than observed with 4 active CPUs. Two active CPUs is better still. 

Not only is the sustainable throughput higher, the curve no longer turns back on itself. Finally, going to 1 
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active CPU produces the behavior we had originally expected – a linear curve with lower sustainable 

throughput than that observed with 2 active CPUs. 

In Figure 2.3 we show the key results – sustainable throughput vs number of active CPUs – from our 

tests. Scaling from 1 to 2 CPUs increases throughput by a factor of 1.7 – less than ideal, but acceptable. 

Adding a 3rd and 4th CPU leads to lower throughput – we’ re better off without them!  

Signature: Figures 2.2 and 2.3 constitute the signature of poor SMP scalability – one or more CPU 

utilization vs. throughput curves that show rapid increase in CPU utilization with little increase, or worse, 

a decrease in throughput when all or most CPUs are active, accompanied by a sustainable throughput vs. 

active CPU profile that increases little or actually decreases as the number of CPUs increase. 

 

Case Study 3: Misconfiguration on a multi-processor machine 

Problem Description: With multi-processor machines common now, overlooking an error in 

configuration can quickly result in performance degradation.  In this case study, a database on a multi-

processor machine was configured to utilize only a subset of the processors available.  This error, not 

evident during normal operations, was straightforward to detect during a stress test. 
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Detection: By running a stress test, failure to utilize all CPU’s in a multi-processor machine can be 

detected by measuring CPU utilization.  

Analysis: We performed a stress test on a machine running a work task manager (WTM) that accessed a 

database (DB) on a separate machine.  The CPU utilization of the second machine (with the database) is 

shown in Figure 3.1.  Immediately, we see a distinct feature – constant CPU utilization of around 50% for 

the duration of the test.  This feature suggests that, on this 4-CPU machine, 2 of the CPU’s were not being 

utilized.  A quick check of the status of the CPU’s confirms that all of the CPU’s were online (in fact, 

commands like sar, iostat, etc. measure CPU as % of available CPU’s, so a 50% CPU utilization would 

not suggest CPU’s being off-line).  Therefore, we concluded (correctly) that the database was not 

configured to utilize all 4 CPU’s.  Correcting this configuration problem resulted in over 50% increase in 

throughput. Note that there are other possibilities for this observation, but all are related to the lack of 

thread/processes.  For example, the WTM front server may be running with 2 threads (either 2 single-

threaded processes, or one process with 2 threads) so that the database would only be able to utilize 2 of 

the CPU’s. 
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Signature: Figure 3.1 constitutes the signature of a misconfiguration on a multi-processor machine: a 

constant CPU utilization at a fractional level of the number of CPU’s (e.g., 25%, 50% or 75% on a 4-CPU 

machine).  The solution is configuring the servers to utilize all available CPU’s. 

Case Study 4: Concurrency Penalty Due to a Synchronized Linear Search 

Problem Description: Java-based applications are extremely popular due to their ease-of-programming 

and faster development times. However, many of the implementation details are hidden from the 

developer. One of these is code synchronization. If a number of simultaneous users access synchronized 

code, then requests must queue for the synchronized resources creating a software bottleneck and 

preventing the CPU from being fully utilized. If the code execution time increases with the number of 

simultaneous users (e.g., a linear search through a table holding information on active users), then 

performance degrades as concurrency increases. 

Detection: Software bottlenecks can be uncovered by conducting a series of stress tests with an increasing 

number of concurrent users. The measures of interest are CPU utilization, throughput, and average 

processing time per transaction.  

Analysis: Figure 4.1 shows CPU utilization vs. simultaneous users for a Java application running on a 

Unix server. CPU utilization flattens at only 60% at a concurrency level of 25 simultaneous users, and 

there are no memory or I/O problems. This indicates that the bottleneck is internal to the software. Figure 

4.2 shows throughput vs. simultaneous users. The throughput peaks at the same concurrency level where 

CPU utilization flattens, then degrades, suggesting that the CPU time per transaction is increasing as a 

function of the concurrency level. We computed the CPU consumption per transaction and this is indeed 

the case. What’s going on? The application under study requires searches over active users as well as 

creation of new objects for each transaction. Object creation, known to be serialized in Java, contributes 

to the software bottleneck but is not the sole source, since object creation time should not increase  
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proportional to the number of active users.  We suspect that the searches over active users may have been 

performed linearly, leading the CPU time to be proportional to the number of active users. 

Signature: Figures 4.1 and 4.2 constitute the signature of a software serialization bottleneck together with 

a linear search – CPU utilization levels off at a value less than 100%, throughput peaks then steadily 

degrades, and processing time per transaction increases with the number of simultaneous users. 
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Case Study 5: Single-Threaded Disk I/O Bottleneck 

Problem Description: This example illustrates one of the (many) signatures associated with a software 

scalability bottleneck resulting from code serialization in a database application. One of the servers 

serializes read/write requests to the disk sub-system, creating an I/O-related choke-point that throttles file 

system activity and causing significant values for wio1 (more than a few %). The system in this example 

consists of the integration of commercial application servers: a Web server (WS), a Java virtual machine 

servlet engine (SE), and an LDAP database (DB) server, accessed via a Web browser. 

Detection: Database code serialization bottlenecks can be uncovered by conducting a series of stress tests 

with an increasing number of concurrent users. As soon as a user receives a response, it immediately 

submits the next request (with negligible client delay). Each of the N simulated users does so 

independently and in parallel. Hardware (CPU, memory, disk, I/O) resource consumptions are measured 

via standard Unix tools (mpstat, vmstat, iostat). In addition, end-to-end client response time is 

measured.  

Analysis:  Figure 5.1 plots the client response time on the left-hand axis, and the active (usr+sys) and 

total (usr+sys+wio) CPU utilizations on the right-hand axis, as a function of the offered load (throughput). 

The active CPU consumption measures CPU utilization explicitly attributable to executing code 

associated with request processing, while the total CPU consumption includes a component (wio) that 

reflects how well the software architecture matches the hardware resources. A significant value for wio 

(more than a few %) indicates that block I/O is a significant bottleneck in the system architecture.  

 

                                                 

1 CPU cycles are attributed to wio only when every request-handling thread is blocked waiting for the return from a 

disk operation. %wio is the percent of time that the CPU spends in the wio state. 
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The CPU utilization curves in Figure 5.1 demonstrate that the system has a serious I/O bottleneck. The 

fact that the %wio is so high suggests that disk resources and/or I/O activities are severely limiting 

throughput. There are several possible causes of a disk I/O bottleneck that leads to high %wio, including: 

L A physical limitation in the disk or memory sub-system capacities, leading to large disk queues, long 

service times, high paging rates, and poor process/memory management; 

M An architectural limitation in the application software (Java servlets or LDAP server) or database 

design, leading to serialization of read/write requests to the disk or excessive contention (locking);  

N A limitation in the OS software (fsflush), coupled with a limitation in the database or application 

software, leading to serialization of requests or long commit times. 

Analysis of the raw data (particularly from iostat) ruled out a physical limitation in the disk and 

memory sub-systems. Disk queues are empty, service times are not excessive, swap and free pages are 

high, paging rates are normal, and process queues are small. Thus, the culprit is likely to be in the 

(database) software. 
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Several telling clues arise from the iostat data (a sample portion of the output is shown in Figure 5.2). 

Each row represents a 5-second average. Thus, 2.6 ops/second (row 1) equals 13 I/Os during that interval. 

As can be seen, disk operations are extremely “batchy” . There are long periods (average ~19 seconds) 

with no disk activity whatsoever, followed by large batches of I/Os (average ~9 operations). 

ops 
/sec 

KB 
/sec 

# in 
queue 

# in 
service 

service 
time 

%wait 
time 

%busy 
time 

%usr 
CPU 

%sys 
CPU 

%wio 
CPU 

%idl 
CPU 

2.6 19.4 0 0.1 36.0 0 2 6 4 87 3 
0.2 0.4 0 0 7.4 0 0 6 3 90 2 
0 0 0 0 0 0 0 6 4 87 3 
0 0 0 0 0 0 0 6 3 89 2 
0 0 0 0 0 0 0 5 3 90 2 
0 0 0 0 0 0 0 5 3 89 3 

0.2 0.2 0 0 12.3 0 0 5 4 91 0 
2.8 21.2 0 0.1 51.1 0 2 6 3 90 1 
0 0 0 0 0 0 0 5 3 91 0 
0 0 0 0 0 0 0 4 3 92 1 
0 0 0 0 0 0 0 5 2 92 1 
0 0 0 0 0 0 0 5 3 91 1 
0 0 0 0 0 0 0 5 4 92 0 

0.2 0.4 0 0 11.8 0 0 4 3 77 16 
2.4 19.2 0 0.1 49.5 0 2 6 4 90 1 
0 0 0 0 0 0 0 4 5 72 19 

Figure 5.2 – Sample portion of iostat output 

Note that the disk queue length is always 0, and the number of operations in service rarely exceeds 0.1, 

suggesting that there is no more than 1 operation submitted to the disk at any time (i.e., I/Os are serialized 

by the application software). For instance, look at row 1: there are 13 operations over 5 seconds, 

averaging 36 ms/op. Therefore, the disk is active 13*36 ~ 470ms during the interval, and the occupancy is 

0.47/5 ~ 0.1 (matches the output). If operations are serialized, as suspected, then the average number in 

queue would be 0 (matches the data). If operations were submitted in a batch, then the average number in 

queue would be roughly given by [12*36 +11*36 + ··· +1*36]/5000 = ~ 0.6 (does not match the data). 

Some of this behavior can be explained by other causes, but not all of the behavior. For example, the OS 

flushes disk blocks every 30 seconds, explaining the “batchiness”  observed in the disk operations. 

However, this does not explain the serialization of disk operations, since the batch is flushed at once, 
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leading to a non-zero disk queue. Thus, the raw data supports the conclusion that the LDAP server is the 

throughput-limiting bottleneck in the architecture, serializing read/write requests to the disk sub-system. 

Signature: The performance signature of a database code serialization bottleneck consists of: 

O Excessive CPU time attributed to the wio state, with relatively low values for usr and sys CPU time; 

P Reasonable levels for disk service times, swap and free pages, paging rates, and process queues; 

“Batchy”  I/O operations, disk queue levels of 0, and number of I/Os in service well below 1. 

Case Study 6: Scalability Bottlenecks Due to Semaphore Contention 

Problem Description: Web applications often access information that is stored in backend databases. For 

example customers and customer care agents may access a database that displays customer care content 

information. Database bottlenecks can be caused when a single process locks the entire database. The 

bottleneck becomes evident as the multiprocessing engine spends almost all of its CPU cycles in spin 

locks and context switches. In addition, response time becomes sensitive to minor increases in the 

database size, as a steep increase in response time is observed due to relatively minor increases in lock 

holding time. 

Detection: Database scalability bottlenecks can be identified by conducting a series of single- and multi-

transaction tests under different load levels as a function of database size, the number of requests/sec, and 

the caching mechanism. Measures of interest are response time, CPU utilization, top processes consuming 

CPU utilization, number of context switches per second, and number of semaphore spins per second.  

Analysis: Figure 6.1 shows the response time as a function of load for different database sizes and a 

transaction mix representative of the field. For the database sizes of 200 MB and 400 MB, the response 

times increase dramatically at about 1.2 hits/seconds, while for the 600 MB database the increase starts at 

1 hit/second and the average response time decreases beyond 1.4 hits/second. A closer look reveals that 

the decrease in response time is caused by a decrease in offered load to the database due to request 
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timeouts. Upon further examination of the system resource data at the 1.2 hits/second rate, we found the 

following: 

Q SUN SE toolkit reports a severe performance alarm on semaphore spins, issued when more than 500 

spins per second are observed or more than 20% of the CPU is consumed by semaphore spins. In our 

specific example semaphore spins of about 70,000 spins/second were observed (a severe alarm). 

R The number of context switches is very close to the number of spins/second. 

S The only process consuming significant processor CPU time is the process managing database access. 

T CPU utilization is evenly distributed across all six CPUs, with the system running at over 80% CPU 

utilization. 

U Disk Utilization is around 10%. 

 

 

What’s going on? As the load grows transactions consume CPU (due to semaphore spins) while waiting 

for service from the database. The CPU cost per transaction increases as the load increases, reflecting the 

increased semaphore contention, as shown in Figure 6.2. The decrease beyond 1.4 hits/sec is due to large 

numbers of timeouts that cause the actual processed load to be much smaller than the offered load. As the 

Figure 6.1 – Offered load vs. Response Time for Different Database Sizes 
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database size increases the database locking time is slightly longer, which causes the instability to be 

observed at lower loads as the database grows.  

 

In summary, the database bottleneck causes a serialization of all database access. Requests to the database 

that find the database semaphore locked, queue in busy wait causing the system to waste almost all of its 

CPU cycles in context switching and spin locks. The CPU utilization approaches 100% as offered traffic 

increases and the Disk/IO sub-system remains underutilized. The database controller process is the only 

process in the system reporting consumption of CPU cycles. 

Signature: The signature of a database bottleneck caused by single-threaded locking is indicated by a 

high semaphore spin rate, number of context switches very close to the number of spins/second, and most 

of the CPU being consumed by the process managing database access, together with the Disk/IO 

Figure 6.2 – Offered Load (hits/sec) vs. CPU tine per transaction (secs) 
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subsystem being underutilized. A supporting indication is that the CPU per transaction increases with the 

transaction rate. 

Problem Resolution: Three simple remedies were recommended to alleviate the database locking 

bottleneck: increase the use of caching so that fewer database accesses are required, configure multiple 

database access processes, avoid database locks all together on read-only transactions.  

Case Study 7: Database I/O Bottleneck Due to Poor Use of Caching 

Problem Description: Internet applications are frequently used to access backend databases, and may 

experience database I/O bottlenecks. Symptoms include high disk utilization resulting in processes 

spending inordinate amounts of time waiting for I/O. The common wisdom is to add more powerful disk 

subsystems. However, sometimes the root cause of the problem lies in the database access patterns. In 

these cases, the problem is to distinguish between when there is a real need for expensive hardware 

upgrades, or when the problem can be fixed with smarter DB query routing. Specifically, exploiting file-

caching mechanisms more efficiently may relieve the bottleneck, then fewer disk reads are required and 

the overall performance and capacity improve. 

Detection: This type of bottleneck can be detected during routine load tests with realistic operational 

profiles that mirror the access patterns in the field and hardware that matches the deployed configuration. 

The symptoms can be detected by monitoring disk utilization and memory usage (e.g., using iostat, 

vmstat and ps).  

Analysis: Table 7.1 shows the memory measurements (output of vmstat) from load tests done with 

multiple DB server machines and queries generated according to a realistic profile. The queries were 

routed to the machines using a round-robin policy.  In addition to the vmstat measurements, the disk 

subsystem utilization was at 97-100% and the DB server processes were experiencing a wait for I/O of 
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~40%. One indicator of a memory shortage seen in Table 7.1 is the page scanner rate2 (column sr). 

Ideally this rate should be below 200 scans/second. We see that the page scanner is about 1000-2000 

scans/sec. Also the page in rate (column pi) is essentially equal to the free rate (column fr), indicating that 

every time the operating system brings data into memory it needs to free up an equivalent amount of 

memory. The memory measurements led us to conjecture that a memory bottleneck was actually showing 

up as a disk bottleneck. Surprisingly, the sum of the memory used by all of the processes (found using 

ps) was 1 GB, out of a total of 2 GB of available RAM, which amounts to just 50% memory utilization. 

The performance is further explained by the following key factors: 

V The DB was based on the Unix file-system and therefore implicitly used the Unix file caching 

mechanism3. The usage of memory by the file cache is not captured by standard Unix memory 

measurement commands. This explains why the memory usage in ps added up to only 50%.  

                                                 

2 The page scanner rate [2] is the number of pages per second that the paging daemon scans while it looks for pages 
to steal from processes that are not using them often. 
3 Unix file cache is a main-memory based cache where Unix stores files recently read in from disks. The files 
remain in the cache even after they are closed and the process exits. The next time a process asks this file to be 
opened and read, Unix tries to get it first from the file cache, and if not found there, retrieves it from the disk. 

memory page cpu
swap free re mf pi po fr de sr us sy id

1514264 57792 5 554 4398 0 4532 0 873 23 9 68
1514632 52984 8 510 8004 1 8003 0 1574 27 9 63
1514504 51264 2 573 9308 2 9327 0 1831 40 10 50
1514200 52400 3 509 8465 2 8435 0 1659 28 9 63
1513784 54096 4 531 7250 1 7436 0 1438 39 9 52
1514096 55104 10 545 6386 3 6508 0 1276 44 10 46
1514160 55192 1 593 6498 3 6379 0 1268 39 13 49
1514000 53840 2 545 7438 3 7673 0 1479 21 8 71
1513904 53208 5 560 8262 2 8122 0 1581 43 11 46
1513896 54408 4 527 6952 2 7064 0 1398 28 9 64
1513928 52680 1 551 8412 2 8451 0 1672 39 10 51
1513848 50136 8 520 10545 2 10502 0 2041 21 9 70
1513656 50272 4 558 10182 2 10217 0 2029 18 8 74
1513696 55184 6 521 6059 3 6352 0 1294 31 14 55
1513616 57664 2 506 4695 3 4546 0 916 54 9 37
1513568 47800 2 539 12398 2 12414 0 2426 29 9 62
1513320 52800 3 542 8603 2 8669 0 1674 43 13 43
1513368 49560 3 527 10791 3 10868 0 2166 24 10 66

Table 7.1 – Sample output of vmstat 
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W The DB was 50GB, compared with a maximum of 1GB available to the Unix file cache. Queries were 

distributed randomly across the 50GB on each of the servers (round-robin routing), resulting in a 

cache hit ratio of 1/50 (2%). The remaining 98% of the time Unix would fetch new files from the disk 

and replace files currently in the file cache. This explains the high scan rate (file cache is constantly 

refreshed due to lack of locality) and the page in rate = free rate (all of the available 

memory was used up by the Unix file cache, which had to be freed before pages could be brought in).  

Signature: The performance signature for a database I/O bottleneck due to poor use of caching is: high 

disk utilization, high percent of process time spent in wait for I/O, high page scanner rate, page in 

rate=free rate, low memory utilization by processes.   

Problem Resolution: The performance bottleneck was resolved by finding ways to improve the cache hit 

ratio. This was done by (1) increasing RAM size (2) reducing the range of the data serviced by each DB 

server machine. In our case, the Unix files constituting the DB were organized by a category, which was a 

natural choice by which queries could be routed to servers, thus exploiting cache locality more efficiently. 

E.g., a 4 GB RAM machine serving a 5GB DB would potentially result in a 3/5 ≅ 60 % cache hit ratio.  

4. Conclusion 

The Internet development paradigm and rapid time-to-market have created a fundamental change in the 

nature of application performance modeling and bottleneck identification. As a result, performance 

analysis has shifted from traditional detailed analytic and simulation approaches to an empirical approach. 

This paper introduced the notion of performance signatures based on data obtained from targeted 

performance testing and outlined a process for implementing signature-based performance testing We 

provide numerous examples of commonly occurring performance signatures that have been found in real 

IP applications.  
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